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Abstract

A cracked metallic coupon, called crack gage, is being considered

as a device for monitoring crack growth in aircraft structures. For

this purpose, a stress intensity factor solution for the gage has to

be known.

This study provides stress intensity factor solutions for two basic

geometric configurations subjected to prescribed displacements.

1. Edge cracked, trapezoidal shaped gages of uniform thickness.

2. Center cracked gages with varying or stepped thickness.

For the trapezoid, the influences cf changing the length of the

cracked edge, while other edge remains constant, and vice versa, were

investigated. The results obtained do not show significant beneficial

changes in stress intensity factor fo: the range of parameters con-

sidered over those of rectangular gages.

Stress intensity factors were -determined for stepped gages of

various geometries. Various thickness ratios, length ratios and aspect

ratios were considered, including the specific geometries of two gages

now under development. In each case, the stress intensity factor was

determined as a function of crack length.

Stress intensity factors were found to increase as the cracked

center portion was made thinner, and as the length of the outer section

was increased. The stepped gage was found to have the potential for

tailoring the stress intensity factor. Finally, analytical results

of stress intensity factor were found to show good agreement with exper-

imental results.
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EFFECT OF GEOMETRIC VARIABLES ON STRESS

INTENSITY FACTORS FOR CRACK GAGES

I. Introduction

Background

The concept and the requirements for safety, durability and man-

agement of military aircraft structures are summa.-ized by Coffin and

Tiff=Lny (Ref 1). As reflected there, the durability analysis as well

as scheduled maintenance for the structure are based on some assumed

usage of the fleet. Usually the actual usage of an individual air-

craft and the fleet will differ from the usage for which the aircraft

was designed. In order to provide updated usage data for force manage-

ment, MIL STD 1530A(ll) (RcZ 2:23-25) requires establishing aircraft

structures tracking programs. Such a program provides baseline oper-

ational load spectra for average fleet usage as well as an Individual

Airplane Tracking (IAT) program, which provides crack growth information

concerning each individual aircraft. The IAT is the feedback link

necessary for the scheduling of structural maintenance.

A typical, current technology, IAT program is that of the F-4

aircraft. This program was developed as part of the Damage Tolerance

Assessment Study for F/RF-4 C/D and F-4E(S) aircraft (Ref 3, 4). The

program uses as tracking devices counting accelerometers installed on

each aircraft and flight data recorders installed on 12% of the fleet.

A crack grawth analysis is performed for critical structural locations.

Stress exceedances spectra for each critical location and for different

1



* usage categories were developed from the flight recorded data. These

spectra along with counting accelerometer exceedances readings are

used to determine the stress history at critical locations. Using

these, a crack growth analysis for an individual aircraft may be per-

formed.

This tracking system, described in more detail in other places

(Ref 3, 4, 5, 6:64-66), is very indirect in defining stresses and in-

volves many sources for error. Further, the enormous amount of data

to be collected in order to get the stresses adds to program cost. A

device, the crack gage, has been proposed which might provide a more

direct and efficient technique for use in IAT programs. It has been

estimated that using crack gages in the F-4 IAT program right save

7.7 million dollars in five years (Ref 6:79).

Crack Gage Concept

A preliminary concept of a crack gage was patented by Smith (Ref 7)

in 1976. A more practical concept for using a crack gage for monitoring

structure crack was introduced by Crane, Gallagher and Grant (Ref 8).

Figure 1 shows the concept of the crack gage. It consists of a pre-

cracked thin metallic sheet with ends bonded to a structure. Since the

structure and the gage will be exposed to the same load history, it is

possible to relate the crack growth in the structure to that in the

gage. The readily observed crack growth in the gage can then be used

as a prediction of crack growth in the structure.

Efforts in various directions were made in evaluating the crack

gage concept since it has been introduced. Torvik (Ref 9, 10) developed

an analytical solution for the stress intensity factor for displacement

2
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controlled, edge cracked gages. Ori (Ref 11) and Ashbaugh and Grandt

(Ref 12) evaluated the concept using both edge cracked and center

cracked gages.

Stepped center cracked gages are now being investigated under

two U.S. Air Force contracts, one with Boeing Wichita (Ref 13) and one

with McDonnell Douglas Corporation (Ref 14). The contract with McDonnell

Douglas will provide evaluation of a center cracked stepped gage on a

F-4 aircraft during a full scale fatigue test.

Statement and Scope of Problem

It has been observed (Ref 9, 10) that relatively high stress inten-

sity factors for an edge cracked rectangular gage may be obtained if

the gage is long, but the magnitude then varies considerably as the

crack grows. on the other hand, constant stress intensity factor vs

crack length may be obtained for relatively short gages, but the gage

sensitivity is then very lo%.. For analytical parposes, such as pre-

dicting the remaining life of a structure, a constant stress intensity

factor vs crack length is desired. It was suggested that an edge-cracked

gage of a trapezoidal planform might satisfy the requirement for a

higher, but constant KI vs. crack length, since the "effective" length

of the gage could vary as the crack grows. The stepped gage was also

considered since the thicker section serves as an amplifier of the

strain in the cracked section from the far field value. The gain may

be controlled by varyiihg the thickness ratios and length ratios of

the segments of the gage.

The gages that had been developed for the activities previously

mentioned were basically developed empirically. It became apparent

4



that an analytical method that could be used to obtain stress intensity

factor solution for stepped center cracked gages was required. Gages

with different stress intensity factor sensitivities are required so

* ithat the gage can be matched to the specific usage, i.e., applying

gages of very high sensitivity to structures to be subjected to a large

..rJ number of cycles.

In this study, a means of obtaining analytical predictions of the

jstress intensity factor for the two geometries, trapezoidal planform

and stepped gages, is developed. These methods are applied to the design

of crack gage and the results for the stepped gage were experimentally

verified.

5
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11. Stress Intensity Factor Solution for a Cracked
Flat Sheet Subjected to M5ixed Boundary Conditions

Introduction

A method utilizing Williams' (Ref 15, 16) stress functions along

* with energy principles was developed by Torvik (Ref 9, 10) to obtain

a stress intensity factor solution for a finite, cracked elastic sheet.

Solutions were provided for'a rectangular edge cracked sheet subjected

to mixed boundary conditions. Part of the boundary was subjected to

*prescribed tractions as shown in Figure 2A, herein referred to as the

type 1-mixed boundary condition. The solution for a center cracked

sheet, which is the center section of the stepped cracked gage, led to

a different mixed boundary condition, herein referred to as type 2,

and shown in Figure 2B. For this problem, a part of the region of the

physical surface is subjected simultaniously to prescribed tractions

as well as to displacemnts. A Lrief outline of the method developed

by Torvik (Ref 9, 10), for the type 1-mixed boundary condition problem,

and the necessary extension for the type 2-boundary condition problem,

will be presented here.

Method of Solution

Consider a thin elastic sheet for which plane stress conditions

hold, with a crack, starting at an edge. A coordinate system is set

with origin placed at crack tip. The crack faces are located at 0=±T

0-r:a, and are free of tractions. Williams (Ref 15, 16) has shown

that for an infinite domain, stress fields can be obtained by using a

stress function of the form

X(r, 0, X) =r F(, X) (1)

" = . . . - . . . . " -' a .* ,. 4 "' . . . .



" I E DGE 2 SU° CU, UyU

U*= 0

EDGE E EDGE 1
ST: CT, T*= ST:CT, T*=0

! 7 T

ST:CT: T*-0 X.

(a) Type 1, Mixed Boundary Corditions
- No mix between prescribed traction an.d displacement on same region

-EDGE 2

ST:CT, T*=T 0

EDGE 3 I D EDGE I
Su:Cu Ux0 T:CT T*=0

ST:CTU, T*=O

ST:CT ,T*=

(b) Type 2, Mixed Boundary Conditions
- Prescribed stresses and displacements on same region

riguLe 2. Mixed Boundary conditions Problem.
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=m12 for m 1 , 2, 3, .. (2)

The stress function may be divided into even and odd parts. Since

the geometries of interest for this study are symmetric in respect to

X axis, only the even part of the stress function is of interest. In

addition, displacements corresponding to the stress function may be

found from

2U DX + (1 - S)r~l (3)

2i0lJ= -1 _X+ (1 - s)r 2 _ (4)
r ae Dr

= shear modulus s V/i+V V Poisson ratio

aV2X a (5)
Dr 30

The even parts of X and i , as well as the corresponding

stresses and displacements, are shown in Appendix A. Each stress and

displacement is made up from an even and an odd part. As stated by

Torvik (Ref 9:3-4, 10), the stresses a and the displacements U may

be represented in the form:

F rr M rrm

/ d m a m (6)

L are mml r j

where each am satisfies field equations and the traction free require-

ment on the crack face, and
2Ur M  IUr m

1-7 'd (7)

L 2 U. m=l L L OM

8



Each of Um  satisfies strain displacement equations and stress

strain laws, and the arbitrary coefficients dm are related to the

stress and displacement functions coefficients presented in Appendix

A as Am through the relation

dl A1 , d 2 = -A 2 , d 3 = -A 3 , d 4 = A4 , d 5 = A5 , d 6 = -A6 , etc.

In order to find a stress intensity factor, defined as,

K - lim(Y2-iTr o0(6 = 0,r)} (8)

K

it will be required to find the stress c@e for a certain boundary

condition problem. More specifically, the coefficients dm  in Eq (6)

are to be obtained.

After applying the limit procedure, the only term to remain is

the one multiplied by dI . All other terms vanish since they include

rP  expressions, p_1/2. Hence,

K- T' A1 - dl (9)

The solution of the coefficients for a mixed boundary condition of

type 1 was given by Torvik (Ref 9:20-21, 10) utilizing Reissner's prin-

ciple. The interpretation of Reissner's principle by Fung (Ref 17:299-

300) is that the surface S enclosing the domain V , can be divided

into ST and Su , where tractions are prescribed on ST and displace-

ments on Su . A more general interpretation will be presented here.

In the type 2 mixed boundary condition, a surface region CTu on

the surface S can be subjected simultaniously to prescribed tractions

and displacements as well. Hence, it may be considered a subset of ST

as well as SU ,with the relations:

9



S - ST + Su  (10)

ST - CT + 'u (11)

S u . + CT (12)

where CT  is the region where only tractions are prescribed, and Cu

is the region where only displacements are prescribed.

Consider the functional (essentially Reissner's function)

Ji n W(eij)- FiUijdv- [ei- 1/2(Uij + Uj,i]dv -

V v

Ti " UidS - ijyj(Ui - Ui*)dS (13)

ST Su

Where stresses, displacements and strains are to be independent vari-

ables, and Gij=0ji. The elastic equilibrium will be obtained by setting

J = 0, or J will be stationary with J = 0. The I. are introduced as

Lagrange multipliers.

= 0 (W 6eij - Fi6Ui)dv -fa [e - 1/2(Ui,. + U )ldv -6J o J Oeij aij [ij U~

v v

-f 0ij6eij - i/2(6Ui,j + 6Ui1 )]dv-f Ti*
6ujds -

v ST

-f S(Vjaij) ' (ui - U i*)dS V if Gij6 UidS (14)
Su  Su

Rearranging and applying the divergence theorem to third integral, we find

v v

- /2(Ui j + U iji)]dv +f ai6UidS -f T*6UidS -

S ST

-f (Ui - Ui*)6T dS -f TiauidS (15)

Su Su

10



Realizing that the first three integrals represent the stress-strain

law, equation of equilibrium and strain displacement equation respec-

tively, they may be omitted from Eq (15) if we choose the stresses to

be represented by Eq (6), and displacements by Eq (7), along with the

corresponding strain.

Eq (15) reduces to:

f VjC~~ij6dS -fS T i*6UidS -fS (U - U i*) 6TidS -f~ Ti6U idS~o (16)
SST u

f -Ti*)6t idS I U - Us*)&ridS = 0 (17)
SST u

Applying Eqs (11) and (12)

f C (T i - Ti*)6UidS 
(U .- Ui*) 6Tid sS +

(T T) (U. -U *)6 S 0 (18)

where Ji, and the parentheses indicate suspension o! the summation

convention. On CTu , one component each of displacement and traction

are given.

Eq (18) may be used to find a K, solution for problems with mixed

boundary condition of type 2.

Use now the stresses and displacements as defined in Eq (6) and (7)

to find variations of stress and displacement.

M

d d a i j  (19)

p-1



6U r Urp]

2p1  j p6 (20)

[6U0 6 pl U

Substituting Eqs (6), (7), (19) and (20) into Eq (18):

M

(v m - Ti *)dpP]dS

M M

[dv U1 m 2Pi)j T( 6diPU dS -

M M

ifm p~ n hn

1 M r M

j v d~m) dS -~J* ( VmL 6d(a. % 0(1

MU T

-f: T1*.Ui~dS I-f [T i*.U i qdS -2pUi*Ti q dS -fc *2/ q

(22)

Eq (22) may be represented as:

Z.%m - F (23)

where Amq is a symmetric matrix.

12



A~q N a + ) U + (V CT + v a )U qids-
CT c r rr + re r r r ee) 6

T Tu
[U (V a + ( +r Nr v a )]dS (24)

-+ 'eq) rrme r rrr ore

The reader is reminded that only one product of force and displacement

is to be evaluated in the contribution of C to each of these integrals.

Cq T*Uq+T*q d - 2f (U *Te q + Ur*Trci)dS

r0C0 rr (25

[Tr*Ur q + T *U - 2p(U*T q + U*T q)]dS (25)
C ae r r

Since the displacements are prescribed elsewhere, the crack tip

has to be allowed to translate. Thus, as stated (Ref 9:20, 10), we may

introduce a translation term into the expansion, which will be

02 pUr = d0Ui  = docose (26)

0
2pUe - doU0  = -dosinO (27)

0 0 0
with Orr '0e ,  being zero.

By solving Eq (23) along with Eqs (24) and (25) for the coefficients,

a solution for a finite, two dimensional, cracked elastic sheet with

mixed boundary conditions of type 2 is obtained. Note, that by elimi-

nating the integral on Cu region, we get a type 1 mixed boundary

problem, and Amq and Fq will have the same form as shown (Ref 9:23, 10)

previously.

Since the particular gage geometries for this study are the trap-

ezoidal gage and the stepped gage, the formulation for getting Am

and Fq for these geometries will be shown.

13



The basic boundary conditions for the trapezoidal gage arQ essen-

tia.ly' as shown in Figure 2a, and the formulation was presented (Ref 9:

23, 10).

2 v I ~ ( U ~ o s Oq q ) 4
Fq = 2 (Ux*CUO + Uy*sin6)( Vrr q + vGr ) +

+ (-Ux*sine + Uy xcos 0). NOr q + V a q ) ] d S  (28)

; 1 when evaluating Amq for the discussed geometry, crack faces a:xe free

of traction. The first integral of Eq (24) will be evaluated on edged

1 and 3, while second integial will be evaluated on edge 2.

The case with boundary conditions shown in Figure 2b represents the

center portion of the stepped gage. Edges 1 and 2 are part of CT ,

where tractions are prescribed, while eCge 3 is part of CTu

Taking into account boundary conditiors, only a part of the integral

CTu exists on edge 3. Due Lo boundary condition pr2sentation, A,,

and Fq will be represented in carte sian coordinates, and Eq (24)

becomes

r U ntUq q m nq
Amq = T + T ]dS +r T - U'T ]dS (29)

xCT y y Y y x x

with C. = 0 , and with the prescribed variables on CTu substituted

into Eq (25), we get

F (T *Uq + Ty*U )dS (30)
cT

Those last two equations will be used to solve the stepped crack gage

stress intensity problem.

14



III. Stress Intensity 7actor Solution for A Trapezoidal,
Edge Cracked Crack Gage with Prescribed End Disnlacements

The edge cracked rectangular gage has a tendency to give low stress

intensity factor values for short gages, while the sensitivity improves

for relatively long gages (Ref 9:34-46; 10). This has also been ob-

served in experiments (Ref 6:73). The disadvantage of long gages is

that K1 does not remain constant and even decreases as crack grows.

This property is not desired for a crack gage. It was thought that

giving the gage a trapezoidal shape as shown in Figure 3, a better con-

trol on the KI variation with crack growth, and a higher KI might
2

be achieved.

The suggested configuration consists ef a thin gage bonded to a

structure along the line AB. The structuxe is lozdcd by stress is

and displacements are transferred to the gage throug h line AB. The

stress intensity factor solution for this case was obtained by using

the method snown in Section II. Using Eq (28) along with Eq (24),

Eq (23) gives a solit4on for the coefficient dl

The prescribed dicpl cerents are

, (Ts
U y  (31)

5= -xV 1s (32)
Ux  Es

where y Ha - tgc" (b - x) and '.3 (33)

The matrix A.q was evaluated by a computer progran (see Appendix

B) using an expansion of thirty-six coefficients, including these for

rigid body displacements. The integration was performied over 300

boundary points. The variables for this study were chosen to be the

15
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Figure 3. Trapczoid Crack Gage
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angle a , which was assumed to control K, changes as the crack grows,

and also to control the magnitude of KI , since the gage length dimen-

sions are changing. Former results for a rectangular gage (Ref 9:34,

10) indicated that a gage with an aspect ratio of 2 Ha/b=2 might be a

good one for the study, since KI  for that gage was fairly constant

as crack length, a , increased.

Results and Discussion

Non-dimensional stress intensity factor results for He/b=1 are

presented in Figure 4. It can be observed that changes in a in the

range of 160" - 2000 have a very little influence on the magnitude of

K* The general behavior of KI vs. a improves a little and for

a = 2000, K1/,lib is almost constant on the range .4<a/b<.8.

Results for Ha/b - 1 are presented in Figure 5. It can be observed

that in comparison to former results the changes in K1 are relatively

large as a changes from 1650 to 1950. This can be related to the

fact that under the displacement loading, the K1 will be more sensitive

to length changes on Hc than on Ha since the former directly affects

the crack opening, and K1 may be considered proportional to crack

opening.

17
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Figure 5. Stress Intensity Factor for Tiapezoid Crack
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IV. Stress Intensity Factor Solution for a Stepped
Center Crack - Crack Gage, with Prescribed End Displacements

The stepped center crack gage concept is described in Figure 6.

The gage consists basically of three segments. The center segment of

reduced thickness which includes the crack, and two thicker end seg-

ments.

Part of each thicker segment is bonded to the structure, and a

part (of lengt!. Lo ) is free. It is assumed that the gage is clamped

to the structure along lines AB and GH. This assumption is only an

approximation since the actual load transfer from the structure to the

gage should be modeled as loads transferred through springs, where the

adhesive layer is the spring element. However, the exact model was

beyond the scope of this study. Displacements of line AB relative to

line 0-0 are assumed to be transferred completely to the gage with no

losses in the bond line, i.e., the bond line does not rotate.

Due to the symmetry, the center segment of the gage needs to be

solved only for a quarter of the plate, as shown in Figure 7. The

entire outer segment, shown in Figure 8, was analyzed in order to obtain

better accuracy with the finite element analysis.

Methods of Solution

Two analytical methods will be used to obtain the complete solution.

The Finite Element Method will be applied to solve forces and displace-

ments of the outer segment of the gage and the method described in

Chapter II will be used to solve for stress intensity factors, stresses

and displacements for the center segment. Bowie et al 'Ref 18:767-772)

introduced also the idea of getting stress intensity factors by using a
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stitching technique. They used one analytical method to solve stresses

and displacements for cracked and uncracked part. By stitching the

solutions stress intensity factors were found for center cracked uni-

form thickness plate subjected to uniform stress loading.

Since the line CD is actually the connecting line between the

two segments, we will demand displacements and forces produced by the

two methods to be equal on this line. Let the line CD be discretized

into 2n elements, each of length Dx. Each element will be representei

by a nodal point, considered to be at the center of the segment, at

which forces and displacrments are assumed to be applied.

The outline for the solution is as follows:

{U*} = {Uc} + {U0} (34)

where U* , Uc are the prescribed relative displacement of line AB

(Figure 6) and relative displacement of line CD with respect to inertial

frame x, y, respectively. U0 is the relative displacement of line AB

with respect to CD. Using flexibility matrix of center segment [Sc]

and flexibility matrix of outer segment [So ] , we have

{Ucl - [Sc) {Pc} (35)

{u 0 1 - [So] {P01 (36)

On line CD, the forces {P0} = {Pc} (37)

After substitution

{U*}- [[So) + (Sc]){PC) (38)

All the forces and displacements are expressed by x and y direction

components consequently all matrices are partioned and the number of

rows or columns is twice the number of nodal points under consideration.
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Suppose a unit load is applied to each element of the center seg-

ment, successivley. Using the technique described in Chapter II, the

coefficients of the expansion may be solved for each loading case.

From the coefficients solved for a unit load at nodal point k, the

first is of particular interest and will give the stress intensity

factor for unit load at nodal point k . When we repeat the procedure

for all nodal points, we may construct an array {D} whose k'th element

is the contribution of load at point k to the stress intensity factor.

The stress intensity factor for the center segment under uniform dis-

cretized unit load is obtained by summing the elements of {D}. If the

load at each nodal point is different, the stress intensity factor

solution may be written as:

K, = 27{DIT ?c} (39)

or,

K, = 2T{D}T [[Sc ]+ 1So] -fl{u* (40)

Thus, the solution for the stepped gage with prescribed end dis-

placements requires that the flexibilities [ Sc] and [SO] be determined.

A prescribed stress T* , on k'th element, Dx long, may be con-

verted into a "concentrated" stress at the nodal point xk producing

a unit force per unit thickness by defining a loading function.

Tx - 6 (x - xk) T* - 6 (x - xk) (41)
y

so as to produce an unit force in each coordinate direction on any

element, centered on xk

xk-Dx/2(- xk)dX - 1 (42)
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For simplicity a unit thickness is considered. The vector Fq

can be computed by Eq (30), with displacements evaluated at xk

The matrix Amq can be evaluated by Eq (24) and the system of equations

can be solved for the coefficients dm by usipg Eq (23). With the

set of coefficients known, the actual displacements at every ot.er

nodal point 1 can be evaluated. By repeating the procedure for

k 1...n, we contruct the flexibility matrix [Sc ] , along with the

array {DI which is constructed from the coefficients dl for each of

k load points. The flexibility matrix [Sc I is actually factored such

as to account for actual thickness ratio between center and outer seg-

ments of gage. The outer segment flexiblity matrix is contructed by

using "ANALYZZ" (Ref 19), a finite element analysis computer program

developed at the Air Force Flight Dynamics Laboratory. The matrix was

established by constraining one end of the segment completely to simu-

late the bond line, and the other end was loaded with unit forces at

discrete points.

Numerical Evaluation

The problem introduced for the center segment was solved by com-

puter programs which are described in Appendix B. The objective of the

program was to evaluate the matrix Amq , given in Eq (29), to solve

Eq (23) for the coefficients, and to construct the flexibility matrix

[Sc] in the manner previously described.

The matrix Aq was evaluated by a numerical integration along

edges 1, 2, 3, using Simpsons' third rule. The boundary was divided

into 300-400 points. A slight sensitivity to the number of integration

points was obaerved (for short, Lc) when elements of different lengths

were used to perform the integration on separate edges.

26



The number of terms, M, used for the expansion was 18. The number

of nodal points used on edge 2 was 20. Consequently, the flexibility

matrixes were dimensioned 40x40, partioned into x and y components.

The flexibility matrix of the outer segment was developed for a

whole outer plate, and the corresponding 40x40 matrix, [So I was

extracted.

The prescribed displacement U* was chosen to be 1 in longitudal

y direction and zero in x direction. As has been shown, releasing

the transverse constraints would have little effect oii results (Ref 9:

32, 10), since the stress intensity factor is driven primarily by

displacments perpendicular to crack plane-

Stress intensity factors were computed for center segments having

lengths:

Lc .4; .6; .8; 1.0; 1.25

The outer segments having lengths

Lo  =1.0; 1.267; 1.6; 2.0; 4.0

and for the thickness ratios

tc/to = .2; .5; .75

The width in all cases was taken to be b=2.0.

Stress intensity facors were not calculated for all combinations of

variables.

Results and Discussion

A sample of the results of a convergence study for the stress in-

tensity factor solution of the center secgmnt with 12, 18 and 24 terms

is presented in Table I. No significant changes for more than 18

terms were observed. The nuber of nodal points 1, was varied throtiah
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10, 20, 30, 40 and results for stress intensity factors are compared

in Table II for a/b = .2; .6. A rapid convergence may be observed

for n >10. Using results for 40 nodes as a reference, 10 nodal points

give about 63%, and 20 nodal points give 94% of the reference value

for a/b = .2. For a/b = .6 the results for n = 20 is 98% of the

result obtained using n = 30. The convergence for longer cracks seems

to be better, since the relative error of load fraction distributed

over the crack (governed by element size) is smaller for long cracks.

The stress intensity factor solution obtained for the uniform

discretized stress loading on the central segment is given in Table

III, and is compared to published results for a uniform stress loading

(Ref 20:11). Table III shows that present results are low by five

percent, a factor that may be attributed to the number of nodal points.

In order to check the overall approach cases of tc/to = 1 were

run. This case is actually a case of a center crack gage with uniform

thickness and half length of Lc + L., subjected to prescribed displace-

ments at the end. Comparison to published results (Ref 20:16) indicated

that present results are within 10-15% higher than published for the

same aspect, ratios, and uniform thickness.

Due to the fact that the gage is constructed from relatively short

plates, the finite elements solution was checked thoroughly, and re-

sults were found reasonable (see Appendix C). However, the finite ele-

ment analysis was performed on a complete outer segment instead of a

half since the displacements results were more reasonable in this con-

figuration.

During the center segment analysis, attempts to invert the flexi-

bility matrix were made and difficulties encountered. However, no
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Table I

Convergence of Stress Intensity Factor
K1/a s b

Lc .4 b 2.0 n= 20

M** = 12 M = Is M 24

1.2620 1.2660 1.2662

*n = number of nodal points on half width

**M = number of terms in expansion

2M = number of coefficients in expansion

Table 7I

Convergence of Stress Intensity Factor

Lc =.4 b =2.0 M = 18

a/b n = 10 n = 20 n = 30 n =40

.2 .8497 1.266 1.322 1.30

.6 6.607 6.731
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Table III

Stress Intensity Factor for Stress Loading - Comparison
with Published Results

Lc/b = .5 Rooke (Ref 20)
K I/as/b (Data transferred to

Present Results same nondimensional
a/b Discrete load form)

.2 .84 .88

.4 1.70 1.78

.6 3.15 3.28

explanation for this difficulty was found. The final results, as well

* as the intermediate results of the analysis, wzre w.ithin reasonable

agreement with other published results. Thus, the flexibility matrix

was accepted in spite of the unexplained difficulty in coraputing an

inverse.

Figures 9 through 19 show thie strews intensity factor results

obtained in this study. One of the gages (Lc/b = .2 Lo/b = .63

tc/t o = .5) was developed by M4cDonnell Douglas Corporation as part

of the evaluation of the crack gage on F-4 full scale fatigue test

(Ref 14). Another gage (Lc/b = .625 Lo/b = .G25 tc/to = .2) was

developed by Boeing Wichita as part of contract F33615-77-C-5073 (Ref

13). The results aze given in a nondimensionalized form (Ki/C./b)

(Es/Eg) vs. a/b, where (s is the stress of the carrying structure

at the bond line, such that a longitudinal displacement

E LT(43)
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is transferred to the gage, b is the width of the gage and a is

the length of the crack. Figure 9 shows the typical benefits of the

stepped gage compared to a gage with uniform thickness. For the same

aspect ratio, i.e., 1.5, the stepped gage gives a 40% higher stress

intensity factor and is more constant. Furthermore, the range of

stress intensity factor available to choose for a specific need with

geometrical restrictions is very large. Figures 10 through 18 show

that stress intensity factor will grow as thickness ratio will de-

crease, and as Lo  grows for a given Lc . Figure 19 is typical,

showing the effect of change in thickness ratio change while the

length ratio is held fixed. It may be observed that changes in length

ratios of center and outer segment appear to change the magnitude and

the shape of SIF vs. a/b, while thickness changes will affect primarily

the magnitude only. It was found that for a thickness ratio less than

tc/to = .1, the stress intensity solution is as if the prescribed dis-

placement was applied directly to the center segment.

For fast approximations of the stress intensity factor, the following

equation may be used (see Appendix D for details).

K1Es) L + Lc

VS--a' + )L](44)
vib t o

In this equation, Rice's (Ref 22) limit values for KI in a

short infinite strip with a semi-infinite crack is encountered. The

values of K, obtained by this approximation are within 10-15% lower

than the actual solution, for a/b > .6. The approximation was verified

for values of tc/t o and L0/Lo in the range investigated, and is suggested

as a rapid means of obtaining a trial design with desired stress intensity

factor.
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V. Experimental Results

The methodology for the verification of analytical results of

stress intensity factor for center cracked stepped gage is based on

Paris' law.

da/dN = C(AK)m (45)

Where a is the crack length; N the number of loading cycles; C, m

the material constants and AK is the difference of stress intensity

factor for each loading cycle. If we measure da/dN in an experiment,

we can find LK , provided the material constants C and m are

known. When conducting a constant amplitude stress cyclic test with

R70 where R is amin/amax then AK becomes actually the stress inten-

sity factor. This sort of test is to be designed such that no retar-

dation effects will be experienced during the test. A series experi-

ments were designed to check the analytical results of this study and

in addition were a part of the evaluation of the crack gage designed

by McDonnel Douglas for the F-4 full scale fatigue test. Due to

technical difficulties, this test program is not completed and inter-

mediate results are not reported. However, Boeing (Wichita) as part

of contract No. F33615-77-C-5073 (Ref 13) has conducted a series of

base line tests and constant amplitude stress crack growth test for

a similar stepped crack gage. Since their data was applicable for

vexification of the results presented in this study, raw data was ob-

tained and reduced to compare to analytical results to be presented.

The material used for the Boeing specimens was 7075-T651 aluminum.

The Paris' law constants were found to be C = .1479*10- 14 and m = 2.49145
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where the units of da/dN and Ak are in/cycle and psi*rin, respectively.

base line data was fit to equation (45) with a computer program pro-

vided by Dr. Ashbaugh and Dr. Grandt from AFML (Ref 23). This program

uses Feddersen's formula modified by Tada (Ref 21:2.2) to evaluate

for a center crack coupon. The gage shown on Figure 20, was bonded

to the carrying specimen, shown in Figure 21, by FM-73 adhesive. Con-

stant load amplitude tests were conducted with Us = 10,000 psi and

R = 0. Crack growth vs. cycles was recorded. From a vs. N data, da/dN

was calculated and by applying Paris' law, K1 was determined. The

results shown in Figure 22 were taken from two different tests employing

six gages, and where gages were located back to back on the carrying

specimen. The first test carrying specimen, AFCG-1, included two of

the gages. On the second test specimen, AFCG05, four gages were bonded

to the carrying specimen. The graphical results of Figure 22 show very

good agreement between test and prediction. It has to be noted that

there is significant scatter in the experimental results, as is to

be expected. Scatter is inherent in this experimental procedure due

to variation in materials, loading accuracy, crack length reading and

differentiating procedure used to obtain da/dN.

I
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VI. Conclusions and Recommendations

This study provided methods for obtaining stress intensity factors

for trapezoidal planform gage and stepped gages. For the stepped gage

solution, a method was developed using Reissner's principle along with

finite element techniques which proved to give satisfactory results,

as verified by test. It was clearly demonstrated that Che stepped

gage can be designed to have stress intensity factors within a wLde

range.

Conclusions

1. The trapezoid shaped edge cracked gage has no significant

advantage over rectangular gages.

2. The method of solution introduced for stepped gages has been

shown to be suited to the analysis of these geometries with good

accuracy.

3. The stepped center crack gage provides a convenient m<&ns for

obtaining desired stress intensity factors due to the relative ease

with which substantial changes in KI may be obtained by varying the

geometry, and is to be preferred to other geometric shapes which have

been considered for the crack gage.

Recommendations

1. It is recommended that the analytical results presented in

this study be verified by further testing of stepped gages of other

geometries.

2. It is recommended that the K, solution method for stepped

gages introduced be included in crack growth prediction models so as
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to provide an analytical model for crack growth prediction for

crack gages under load sequence more complicated than constant

amplitude.
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Appendix A

Stresses and Displacements as Result of
Williams' Stress Function

For the symmetric type problems introduced, only the even pert

of Williams' stress function is of interest and may be expressed as:

_n-1 iAnin+1/2 2n-_
Xe ( l nlA cos(n - 3/2)0 + 2n - cos(n + 1/2)} +

2n + 1

n n+1+ (-l) A2 nr {- cos(n - 1)0 + cos(n 4 1)0} (46)

0 rr' Goo, 0 ro are found by:

1 e  1 X
e 1 - e + L -- (47)rr 2r C)2 r r

2
aY 60 Xe (48)

2
.2

1 dXe 1 ~Xe (9Oro r r, +  --2 - - ( 9
Sr 2

rQ(l) = (-l)n-lrn- 3 / 2 A2 n- (n - 3/2)-(n 1/2),

.- {sin(n + 1/2)6 - sin(n - 3/2)0) (50)

arO(2) (-) nrn-lA 2 n(n){(n + l)sin(n + 1)0 - (n - l)sin(n - 1)0} (51)

are = Or(1) + Ur0 (2) (52)
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rr() n-3/2n [(n - 3,/2)2 - (n + 1/2)].cos(n -3/2)0

- (n - 3/2) (n - 1/2) cos(n + 1/2)G} (53)

rr(2) (_l)nr n-i A2n {[(n - 1) 2 (n + 1)]cos(n - 1)0 -

- n(n + 1)cos(n + 1)e} (54)

Orr = Orr(1) + Orr(2) (55)

n-l n-3/2 n - 3/2
0  () n + 1/2)(n /2)-{ 1/2 cos(n + 1/2)0 -(i)

- cos(n - 3/2)0} (56)

00(2) (-1)n r n-A 2 (n)(n + 1){cos(n + 1)0 - cos(n - I)} (57)

00)(1) 0(2) (58)

Solving the equation

V 2Xe = D (r 94)e- (59)

get as a result

- r(nl-l .(n-3/2)2 - (n + 1/2)2
n - 1/2 2n-i - 3 -sin(n - 3/2)01 +

n rn-i (n-1)2 - (n + 1)2+ - * sin(n - 1)0] (60)
2n n-1

Substitute in

axe2  
axUr L+ (- s)r -

(61)
3r 30
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r * + (1 - s)r 2 (62)r 30 DI 62

V = Poisson ratio s = v/(1 + v),

p= shear modules.

As a result:

( -n1/2 s 22U -A2nlt [(n + 1/2) +( /)[( - 3/2) (n- /2)i]"

•cos(n - 3/2)0 - (n - 3/2)Ocos(n + 1/2)01 (63)

nn i-s 2 22 pUr(2) (-) r A2 n{ [(n + 1) + (----) ( (n - 1) - (n + 1 ]l

*cos(n - ) (n + l) cos(n + 1) 0} (64)

2 pUr 21t(Ur(1) + Ur(2) (65)

2pU 0 r-l rn-1/2 A L[(n 1 - s20U(1) = rI L( -n/2 -1/2
A2 1 - 3/ n - 1/2

'[(n - 3/2)2 - (n + 1/2)2] sjn(n - 3/2)0 + (n - 3/2)sin(n + 1/2) 0)

(66)

=p (-l)n n -(n 2 (n +'[I

0(2) 2n 2

*sin(n - 1)M + (n + 1) sin(n + 1)0} (67)

2uU = 2P(U 0 (1 ) + U(2)) (68)
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Appendix B

Description of Computer Program

Three computer programs used to generate the stress intensity

factor in this study will be described here. Program COEFDT was used

to solve the trapezoid case. COEFINA was used to provide the solutinn

for the center segment of the stepped gage. Program TAYLOR was used

to match the segments of the stepped gage. A few subroutines are

common to both COEFDT and COEFINUA. The subroutines and parts of COEFDT

and COEFINA were developed by Torvik for a previous analysis (Ref 9,

10).

Subroutine DPSI

In this subroutine tangential displacements in Eqs (66), (67) are

evaluated. The results are transferred to the main program as for

Eq (66) and Eq (67) separately.

Subroutine DR

In this subroutine radial displacements as in Eqs (63), (64) arc

evaluated.

Subroutine SPR

This subroutine evaluates radial stresses as in Eq (53), (54).

Subroutine STT

This subroutine evaluates tangential stresses as in Eqs (56), (57).

Subroutine SRT

This subroutine evaluates shear stress as in Eqs (50), (51).

Program COEFDT

This program evaluates the matrix Amq as in Eq (24). The eval-
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uation is done for each of the three edges of the three separately,

and th-c results added to produce the required matrix element. The

evaluation is made first on the uncracked edge, and last on cracked

edge. Then £q is evaluated on edge 2 via Eq (25). Finally, the

system of Eq (23) is solved for dm, and dl is the desired result.

Program COLF11A

This program evaluates the matrix Amq via Eq (29) in th same

order as done in program COEFDT. The vector Fq is evaluated on edge

2 via Eq (30) by moving a unit load from one nodal point to the other.

Fq is evaluated n times as the number of nodal points. Solution

kof Eq (23) each time gives finally an array {D} of coefficients dr

In parallel to the above described procedure, the program constructs

the flexibility mat,:ix [Sc] for the center segment.

Program TAYLOR

This program evaluates KI via Eq (40).
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Appendix C

Finite Element Solution

The flexibility matrix for the outer segment of the gage was

obtained 'y using a slightly modified version of the finite element

analysis program "ANALYZE" (Ref 18). The problem was solved with a

mesh that consisted of 452 nodes and 441 elements. The ele ,i nts used

were quadrilateral and triangular nz -branes. Mesh organization and

boundary conditions are shown in Figure 23. As a check of the solution,

displacements of the "pulled" edge were examined. The displacements at

the edges looked extre.i-ly high in comparison with displac-zments at

the center, but were found to agree with a second solution obtained

through NASTRAN. Since in our case we have a very short membrane,

width = 4, L =1.9; 1.27; 1.6; 2.0; 4.0; and to - .08, it was suspected

that the restraint in the x direction has an effect of singularity.

To check this point, the restraints in the x direction at nodes 1,

441 were released and then all restraints in x direction, except at

the mid-node 221, were released. This modification did not change

the results significantly, as can be seen in Figure 24. This suggests

that no singularity effects were introduced by the x direction restraint.

Figure 24 also shows the displacement variation as the length of the -'

membrane grows.
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constraint boundry condition in z direction

--- Released boundry condition in x direction

except raid nodal point remained constrained
Lo = 1.267

+ Lo 1.267.

X L = 4.0 ---- *-

500 _ _ _ _ _

.4J

400

fn
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Appendix D

Stepped Center Gage - Stress intensity
Factor Approximate Equation

'r

Figure 25. Schematic Stress Distribution at Crack Tip
of Stepped Gage

Using the relationship between stress intensity factor and stress,

on the line y 0 0, we get:

S- 2,(69)

and the force Pa produced over the uncracked region will be

b-a
2K I

Pa /2Tx 1/2 tc x  (70)

0

Pa =  T t c  b-a K (71)
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This force will produce an average displacement on the outer segment

of

PL PL
ao ao (72)

AoE 0  bet o EO

The displacement of the center segment, may be approximated by using

Rice's (Ref 22:249) result for an infinite strip with semi-infinite

crack,

- 2)Lc]l/2

Uc = (73)
E

The total displacement may be expressed as

Utot = Uc + Uo  (74)

On the other hand, Uto t produced by the displacement of the

bond linewith the carrying structure is

U = E (75)
tot E

Substituting and rearranging and making a nondimensional stress

intensity factor, normalized with respect to the nominal stress in the

structure we get:
-j Lo + Lc

Cr AYf/ Lo tc (_v2 )Lc] (76)

b t
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